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bstract

Performance prediction of a commercial proton exchange membrane (PEM) fuel cell system by using artificial neural networks (ANNs) is
nvestigated. Two artificial neural networks including the back-propagation (BP) and radial basis function (RBF) networks are constructed, tested
nd compared. Experimental data as well as preprocess data are utilized to determine the accuracy and speed of several prediction algorithms. The
erformance of the BP network is investigated by varying error goals, number of neurons, number of layers and training algorithms. The prediction

erformance of RBF network is also presented. The simulation results have shown that both the BP and RBF networks can successfully predict
he stack voltage and current of a commercial PEM fuel cell system. Speed and accuracy of the prediction algorithms are quite satisfactory for the
eal-time control of this particular application.

2007 Elsevier B.V. All rights reserved.
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. Introduction

A fuel cell is an electrochemical device that can convert
he chemical energy into electrical and thermal energy [1]. It
s environment friendly as the only byproducts are water and
eat. There are various types of fuel cells which can generate
lectrical power ranging from milliwatts to megawatts. It can
e utilized in a construction of portable electronic equipment,
ehicles, residential or even in distributed power systems [2].

A typical type of fuel cell is the proton exchange membrane
uel cell (PEMFC). There are several reasons for PEMFC to be
popular technology including its solid membrane and medium

emperature range operation, which allow PEMFC to be oper-
ted in any orientation and easy start-up.

To design and control a fuel cell system for the maxi-
um power performance, a designer needs to acquire sufficient

nowledge pertaining to the physical process, the internal

tructure of the process, as well as the dominant input/output
ariables of the system. In sequel, an accurate mathematical
epresentation (model) of the system may be developed with suf-
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cient fidelity to accurately reflect the behavior of the physical
rocess.

During the last decade, several one-dimensional (1D) and
ulti-dimensional (MD) models have been developed to explain

he electrochemical and/or thermodynamic phenomena inside
he fuel cells [3–9]. However, some of these models require spe-
ific knowledge of parameters, i.e., membrane thickness and
esistance which are either unknown or only known to the
anufacturers. Therefore, the availability of the electrochem-

cal equations or models may not be sufficient to accurately
esign the fuel cell system for the optimum performances. In
ddition, these models as described above are commonly very
omplicated for large-scale fuel cell systems.

In the other hand, in most of control applications, the designer
ay be interested in relationship between inputs and outputs as
ell as the internal structure of the system. Such knowledge will
rovide the designers with the sufficient tool to control the inputs
n order to reach the desired outputs, i.e., stack voltage and stack
urrent for our particular application. Such a prediction may be
erformed by using artificial neural networks [10–13].
In this paper, we investigate the reliability of the BP and RBF
etworks for the output prediction of a 1.2 kW NexaTM fuel cell
ystem [14]. First, the fuel cell system and load bank are briefly
ntroduced. Second, the data collection and construction of the

mailto:asaengru@fau.edu
dx.doi.org/10.1016/j.jpowsour.2007.05.039
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Fig. 1. The 1.2 kW NexaTM fuel cell.

P and RBF networks are described. Third, the reliability of the
onstructed neural networks to predict the performance of the
uel cell system is investigated. In addition, a comparison of the
P and RBF networks in term of error goal, training algorithms
nd network architectures have been investigated. Finally, the
esults and conclusions are discussed.

. System description

.1. Fuel cell system
A 1.2 kW NexaTM fuel cell system as shown in Fig. 1, con-
ains a BALLARD® fuel cell stack as well as all the ancillary
quipment necessary for fuel cell operation. Ancillary subsys-

i
g
o

Fig. 2. Block diagram of the 1.2 kW BallardTM fuel cell (Rep
ig. 3. Stack voltage, stack current and power of 1.2 kW BallardTM fuel cell.

ems include hydrogen delivery, oxidant air supply and cooling
ir supply. Onboard sensors monitor system performance and
he control board fully automates operation [14].

The stack voltage and current of range from 42 V/1 A at idle to
0 V/45 A at full load. The system is capable of communicating
ith a computer via LabVIEWTM for data collection and system
onitoring.
The system configuration, shown in Fig. 2, consists of seven

ontrol signals and nine sensors to monitor the significant vari-
bles. The hydrogen pressure is regulated by a regulator valve.
he system controls the air compressor for air flow, and the
ooling fan for stack temperature.
Figs. 3–5 depict the performance of this fuel cell with two
nput variables which are air flow and stack temperature. The 3D
raph shows the visual relationship between inputs and outputs
f the fuel cell.

rinted with permission – Ballard Power Systems Inc.).
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so the stack current can be raised up to 45 A to obtain the rated
power from the fuel cell system.
ig. 4. The stack voltage according to air flow and stack temperature of 1.2 kW
allardTM fuel cell.

.2. In-house load bank

To operate the fuel cell system at its rated power, a 1.2 kW
oad bank with a high cooling rate system is required. We
nitially used power MOSFETs as the load, but the gener-
ted heat from the load current was relatively high. The power
OSFETs failed frequently due to performance of the cooling

ystem.
An alternative load bank has been developed which con-

ists of three power resistors in combination with 32 12VDC
ight bulbs, as shown in Fig. 6. The load bank can increase the
tack current up to 45 A. It is simple, inexpensive and more
eliable. The solid-state relay switches are controlled by the
abVIEWTM.

The load variation scheme applied throughout the investi-
ation, shown in Fig. 7, can be explained as follows: First,
hree resistors are set to the maximum resistances. Then the
rst branch is switched on, the resistor R1 is set to lower resis-
ance and the stack current can be increased to 5 A which is the
aximum current for the resistor.
When the second and third branches are switched on respec-

ively, the stack current can be increased up to 15 A. In the

ig. 5. The stack current according to air flow and stack temperature of 1.2 kW
allardTM fuel cell.
Fig. 6. In-house load bank configuration.

ext step, the first, second and third branches will be turned
ff and simultaneously, the fourth and fifth branches will be
witched on to maintain the load current at about 16 A. In
equel, all resistors will be set to have maximum resistances
gain.

The procedure will be repeated again with the first, second
nd third branches to increase 0–15 A to the load; therefore, the
oad current now can be increased up to 30 A. The procedure
ill be repeated again to include the sixth and seventh branches
Fig. 7. Procedure to operate the load bank.
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. Data collection and analysis

.1. Data collection

The fuel cell system was operated with the load bank up to
aximum current of 45 A. After removing some data deemed

nreliable, we had 883 data points to utilize for our proposed
eural network algorithms.

The data sets collected for the modeling and prediction of
he fuel cell include stack voltage (V), stack current (A), air
ow (slpm), air temperature (◦C), stack temperature (◦C), fuel
ressure (barg), fuel consumption (L), power (W), H2 leak (%),
2 concentration (%), purge cell voltage (V) and battery voltage

V).

.2. Process variable selection

To train the network successfully and efficiently, one needs
o select the appropriate variables as network inputs and outputs
s well as the number of variables. To select the reliable vari-
bles, one needs to understand the process, how each variable
ffects the system performance then identify which variables are
ominant and which one can be discarded. If there are too many
ariables as network inputs, the network will be unnecessary
omplicated and the training may be difficult or take too long
ime to succeed. In contrast, if the fewest dominant variables
an be selected, the network will be small and can provide the
astest training and instant recall.

There are numerous methods for choosing appropriate input
ariables, i.e., using genetic algorithms [15], using recon-
tructability analysis [16], transform the input selection to model
tructure selection [17].

In our particular system, there are several available vari-
bles to be selected as inputs/outputs for our proposed neural
etworks. However, from manufacturer’s system configuration
iewpoint as shown in Fig. 2, the control board controls the air
ompressor for air flow and the cooling fan for stack temper-
ture. Hydrogen pressure is kept constant by using a regulated
alve. The humidity of air and hydrogen is managed by heat
xchanger.

Therefore, we discard the other input variables which have
een forced to be constant by the designer, and select only mass
ir flow (slpm) and stack temperature (◦C) as the dominant input
ariables as specified by the manufacturer. Stack voltage (V)
nd current (I) are selected as the output variables due to their
bvious relation to the fuel cell power generation.

.3. Range of data

In general, neural network performs well in interpolation
ather than extrapolation; therefore, in order to obtain a bet-
er prediction, the recall data should be in the range of training
ata. We randomly select the collected data to cover the range

rom minimum to maximum values as training data and the
emaining as recall data. This approach will ensure that the recall
ata will always lie in the range of training data. The ranges of
nputs/outputs data sets are as follows.

r
m
a

r Sources 172 (2007) 749–759

.3.1. Ranges of inputs
Mass air flow range from 17 to 82 slpm, stack temperature

ange from 28 to 60 ◦C.

.3.2. Ranges of outputs
Stack voltage range from 28 to 42 V, stack current (A) range

rom 1 to 45 A.

.4. Size of training and recall data

When training data set is presented to the network, the
eights and biases are updated on a pattern-by-pattern basis
ntil the entire training data set is completed which is called
ne “epoch”. This training phase is repeated until the network
erforms well according to the error goal as provided by the
esigner. In sequel, the recall data is presented to ensure that
he network has learned the general patterns, not just simply has

emorized the data set. If the network still performs well, the
raining is completed.

Training data set needs to be fairly large and contains variety
f data in order to contain all the needed information. Therefore,
n our investigation, from 883 data collected, 800 data is for
raining phase and 83 data is for recall phase. Figs. 8 and 9 show
he graphs of inputs and outputs for training and recall phase,
espectively.

.5. Preprocess data

Instead of using only the raw data, we also preprocess data to
ave two additional data sets; normalized data and zero mean-
nity standard deviation data. In the subsequent sections, we will
nvestigate which data set provides a better and faster prediction.

The raw data can be normalized to have a range of [0,1] by
sing the following formula:

normalized = X − min

max − min
(1)

Figs. 10 and 11 show the graphs of normalized data for the
raining and recall phase.

The zero mean-unity standard deviation data can be built from
he raw data by using the following formula:

zu = X − mean

S.D.
(2)

here mean = ∑n
i=1Xi/n and S.D. =

∑n
i=1(Xi − mean)2/n

Figs. 12 and 13 show the graphs of zero mean-unity standard
eviation data for the training and recall phase.

. Construction of the BP and RBF networks
Inspired by the biological neural networks, an artificial neu-
al network (ANN) is a massively parallel distributed processor
ade up of simple processing units, known as neurons. With

bility to learn from input data with or without a teacher, neural
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Fig. 8. Raw data for training phase.

etworks find applications in various fields, including modeling
nd control [12,13,15,18,19].

In this section, we construct the BP and RBF networks to
nvestigate how well they can predict the performance of the
.2 kW NexaTM fuel cell system.

.1. Back-propagation networks

A BP network with two hidden layers, as shown in Fig. 14, is
onstructed. In each hidden layer, the number of neurons is var-
ed to investigate the network prediction performance. The input
ayer has two input variables which are air flow and stack temper-
ture. The output layer consists of two neurons for stack voltage
nd stack current. Subsequently, up to three hidden layers will
e used to investigate the NN performances.
.2. Radial basis function (RBF) network

The proposed RBF network consists of one hidden layer as
hown in Fig. 15. The input and output layers are the same as in
he BP network.

5

5

s

Fig. 9. Raw data for recall phase.

. Results and discussions

The following three criteria are selected to investigate the
rediction performances of the BP and RBF networks for 1.2 kW
exaTM fuel cell system:

a) Number of epochs: indicates the training speed.
b) Root mean square error (E2): indicates average error of the

prediction.

E2 =
√∑n

i=1e
2
i

n
(3)

c) Absolute maximum error (E∞): indicates the worst case
error of the prediction.

E∞ = n
max
i=1

(|ei|) (4)

.1. Back-propagation results
.1.1. Data set selection
When using raw data, normalized data and zero mean-unity

tandard deviation data, the performance predictions regarding
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Fig. 10. Normalized data for training phase.

o accuracy and time expenditure for the fuel cell system are

hown in Tables 1 and 2.

These data sets are provided to the BP network whose weight
nd bias values are updated using the Levenberg–Marquardt
ptimization [20] with the error goal of 0.001.

able 1
raining results from various data sets

et of data Epoch E2 E∞

V I V I

aw 3000+ 0.422 0.596 2.208 2.029
ormalized 21 0.518 0.736 2.584 3.089
ero mean 100 0.426 0.746 2.211 2.892

able 2
ecall results from various data sets

et of data E2 E∞

V I V I

aw 0.643 1.907 3.035 1.089
ormalized 0.474 1.126 1.984 2.951
ero mean 0.977 0.991 4.377 3.286
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Fig. 11. Normalized data for recall phase.

From Table 1, it can be seen that the normalized data is the
astest in training phase. The average error (E2) and maximum
rror (E∞) using these three data sets are not much different.
rom Table 2, it shows that using the normalized data provides

he best average error in the recall phase. Zero mean-unity stan-
ard deviation provides the worst prediction performances.The
redictions of stack voltage and current for the fuel cell system
re shown in Figs. 16 and 17. The results show the satisfactory
redictions for the entire operating range except at the initial
hase. From Figs. 8–13, it is observed that, at the starting phase
f the fuel cell system, the inputs are almost constant even though
he outputs are changing due to transient response of the feed-
ack system at the initial phase. Therefore, the NN prediction
oes not perform well at the initial phase.

.1.2. Error goals
In the training phase, the network will adjust its weights and

iases until the output error reaches the designated error goal.

f the selected error goal is relatively too large, then the training
ill be completed in a relative short time. However, a large error

s obtained in the recall phase. On the other hand, if the error goal
s selected to be too small, it will take a very long time for the
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Fig. 13. Zero mean-unity standard deviation data for recall phase.
Fig. 12. Zero mean-unity standard deviation data for training phase.

raining to complete even though it provides a better prediction
esult.

The prediction results of various error goals are shown in
able 3 and Figs. 18 and 19. Epoch 1000+ indicates that the
raining cannot succeed in 1000 epochs. From the simulation
esults, it can be concluded that error goal of 0.001 provides the
est prediction in term of speed and accuracy. Error goals of 0.1
nd 0.01 are too large while the error of 0.0001 is too small.

able 3
rediction results for various error goals

rror goals Epochs E2 E∞

V I V I

.1 Training 1 2.915 4.501 6.414 9.999
Recall 3.062 4.130 6.188 9.484

.01 Training 1 1.583 1.981 4.305 4.720
Recall 1.623 1.879 3.887 4.382

.001* Training 4 0.459 0.816 2.353 2.657
Recall 0.494 0.801 2.232 1.791

.0001 Training 1000+ 0.3702 0.411 2.125 1.697
Recall 0.440 0.726 2.019 1.975

Fig. 14. Back-propagation network to predict the performance of the fuel cell
system.

Fig. 15. RBF network to predict the performance of the fuel cell system.
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Fig. 16. Stack voltage predictions by using three data sets.

Fig. 17. Stack current predictions by using three data sets.

Fig. 18. Stack voltage predictions for various error goals.
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Fig. 19. Stack current predictions for various error goals.

.1.3. Training algorithms
In this section, the investigation of various training algorithms

sing the normalized data and the desired error goal of 0.001
s obtained in the previous subsection for the BP network is
resented. The details of these algorithms can be found in the
eferences or MATLABTM Help. The MATLABTM commands
n Table 4 are used to perform various training algorithms.

The predicting results from various training algorithms are
hown in Table 5 and Figs. 20 and 21. Epoch 3000+ indicates
hat the training cannot succeed in 3000 epochs.

From the results, it can be concluded that training algorithm
y using the Levenberg–Marquardt optimization provides the
est prediction in term of speed and accuracy.
.1.4. Network architectures
In this section, the normalized data, error goal of 0.001 and the

raining algorithm by using the Levenberg–Marquardt optimiza-

able 4
arious training algorithms for the BP networks

raining algorithms Network weights and bias values updated
according to

raingd Gradient descent [21]
raingdm Gradient descent with momentum [21]
raingdx Gradient descent momentum and an adaptive

learning rate [21]
rainrp Resilient back-propagation algorithm (RPROP)

[22]
raincgf Conjugate gradient back-propagation with

Fletcher–Reeves updates [21,23]
raincgp Conjugate gradient back-propagation with

Polak–Ribiere updates [21,23]
raincgb Conjugate gradient back-propagation with

Powell–Beale restarts [24,25]
rainscg Scaled conjugate gradient method [26]
rainbfg BFGS quasi-Newton method [27]
rainoss One step secant method [28]
rainlm Levenberg–Marquardt optimization [20]
rainbr Levenberg–Marquardt optimization with process

called Bayesian regularization [29,30]
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Table 5
Prediction results for various training algorithms

Training algorithm Epoch 3–3–2

E2 E∞

V I V I

traingd Train 3000+ 0.903 3.660 3.902 10.180
Recall 1.119 4.650 3.528 8.780

traingdm Train 3000+ 1.432 4.275 5.562 9.905
Recall 1.551 4.445 5.399 10.506

traingdx Train 3000+ 0.992 4.652 4.413 7.974
Recall 0.650 0.991 2.837 2.360

trainrp Train 3000+ 0.697 1.077 3.573 3.140
Recall 0.747 1.338 3.155 3.122

traincgf Train 433 0.524 0.720 2.756 2.392
Recall 0.548 0.873 2.478 2.566

traincgp Train 968 0.587 0.801 3.456 3.031
Recall 0.563 1.110 2.684 2.694

traincgb Train 401 0.516 0.742 2.951 2.160
Recall 0.530 0.858 2.412 2.383

trainscg Train 1042 0.511 0.818 2.492 2.976
Recall 0.537 1.280 2.356 4.158

trainbfg Train 259 0.500 0.903 2.950 4.069
Recall 0.527 1.439 2.393 3.285

trainoss Train 701 0.522 0.722 2.903 2.656
Recall 0.515 0.844 2.367 2.276

trainlm* Train 11 0.479 0.779 2.450 2.239
Recall 0.502 0.999 2.282 2.362

t

t
b
m
p

s

Fig. 21. Stack current predictions for various training algorithms.

Table 6
Prediction results for various network architectures

# Hidden layers Epoch E2 E∞

V I V I

3 Train 11 0.473 0.769 2.459 2.529
Recall 0.505 1.185 2.390 2.900

3–3 Train 11 0.464 0.907 2.291 3.342
Recall 0.440 1.234 2.026 3.389

10 Train 6 0.449 0.960 2.300 3.056
Recall 0.474 1.216 2.387 3.418

10–10 Train 19 0.496 0.792 2.693 3.503
Recall 0.574 1.225 2.572 3.162

3

rainbr Train 608 0.400 0.603 2.137 2.770
Recall 0.478 0.892 2.193 2.549

ion are utilized. We investigate various network architectures
y varying the number of neurons and hidden layers to deter-

ine which one tends to give a faster and better prediction

erformance.
The prediction results of various network architectures, as

hown in Table 6 and Figs. 22 and 23, indicate that even the BP

Fig. 20. Stack voltage predictions for various training algorithms.

n
a
m
t

–3–3 Train 18 0.462 1.082 2.381 5.484
Recall 0.470 1.659 2.027 5.081
etwork with one hidden layer of 3 or 10 neurons can provide
good prediction in term of speed and accuracy. Therefore, a
ore complicated network may not necessarily perform better

han a simpler one.

Fig. 22. Stack voltage predictions for various network architectures.
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Fig. 24. Stack voltage predictions for various RBF networks.

r
b
l
B

Fig. 23. Stack current predictions for various network architectures.

.2. Radial basis function (RBF) networks

Among three data sets, the normalized data provides the best
esult for the performance prediction, hence we use it in the
ubsequent RBF network investigation. Three algorithms are uti-
ized to train the RBF networks. The algorithms are performed by
sing commands in MATLABTM which are “newrb”, “newrbe”
nd “newgrnn”. The details of the commands can be found in
he Neural network toolbox manual [31].

In training phase, “newrb” and “newgrnn” are successful in
very short time (less than one second) while “newrbe” takes

bout five seconds and cannot succeed in 800 epochs. Therefore,
rom the prediction results shown in Table 7 and Figs. 24 and 25,
t can be concluded that “newrb” provides the best predictions
n term of speed and accuracy.

.3. Comparison between the BP and RBF networks

The best predictions from the BP and RBF networks are
elected and compared as shown in Table 8 and Figs. 26 and 27.
rom the results, it can be concluded that the prediction perfor-
ances of the BP and RBF networks are not much different in
he term of speed and accuracy.
For the NN prediction of stack voltage, there are two points

f RBF prediction that lie a little bit far from the measured
ata. This out-of-track prediction occurs where the voltage is

able 7
rediction results for various RBF networks

raining algorithm E2 E∞

V I V I

ewrb Train 0.448 0.609 2.380 1.953
Recall 0.522 0.888 2.282 2.653

ewrbe Train 0.442 0.603 2.360 2.407
Recall 0.636 0.921 3.935 2.717

ewgrnn Train 0.689 1.008 3.501 3.179
Recall 0.737 1.063 3.244 2.921

n
B
i
b
d
a

T
C

T

B

R

Fig. 25. Stack current predictions for various RBF networks.

apidly changed (ripple points) due to load variation in load
ank (Fig. 6). Since the RBF network has only one hidden
ayer while the BP network has two layers, it is likely that the
P network can smoothen the prediction better than the RBF
etwork at this two particular ripple points. However, both the
P and RBF algorithms provide similar performances pertain-
ng to remaining data sets. Therefore, it can be concluded that
oth BP and RBF networks can be similarly utilized for smooth
ata sets pertaining to fuel cell controller design and prediction
pplications.

able 8
omparison of the prediction performances of the BP and RBF networks

raining algorithm E2 E∞

V I V I

P Train 0.479 0.779 2.450 2.239
Recall 0.502 0.999 2.282 2.362

BF Train 0.448 0.609 2.380 1.953
Recall 0.522 0.888 2.282 2.653
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Fig. 26. Stack voltage predictions for the BP and RBF networks.
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Fig. 27. Stack current predictions for the BP and RBF networks.

. Conclusions

Performance prediction of a 1.2 kW NexaTM fuel cell system
y using the BP and RBF networks is investigated. The simu-
ation results indicate that both the BP and RBF networks can
uccessfully predict the stack voltage and current of the fuel
ell system by using only two input variables which are air flow
nd stack temperature. The speed of training and the prediction
ccuracy of NN are quite satisfactory.

Based on the results of this study, it can be concluded that
f the BP or RBF network is constructed appropriately, i.e.,
roper input–output selection, network architecture, learning

lgorithms, error goal; then it is capable of predicting the per-
ormance of a particular fuel cell system with a satisfactory
ccuracy in a very short time period. Therefore, neural network
an be an alternative approach to model a fuel cell system when

[
[
[
[

r Sources 172 (2007) 749–759 759

he interest is in the input–output relationship, especially in the
ase that the physical models are not available. The derived
odel can be utilized for controller design for both classical

32,33] as well as soft computing methodologies [19,34,35].
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